The KCNQ channel opener retigabine inhibits the activity of mesencephalic dopaminergic systems of the rat.
نویسندگان
چکیده
Homo- and heteromeric complexes of KCNQ channel subunits are the molecular correlate of the M-current, a neuron-specific voltage-dependent K(+) current with a well established role in control of neural excitability. We investigated the effect of KCNQ channel modulators on the activity of dopaminergic neurons in vitro and in vivo in the rat ventral mesencephalon. The firing of dopaminergic neurons recorded in mesencephalic slices was robustly inhibited in a concentration-dependent manner by the KCNQ channel opener N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester (retigabine). The effect of retigabine persisted in the presence of tetrodotoxin and simultaneous blockade of GABA(A) receptors, small-conductance calcium-activated K(+) (SK) channels, and hyperpolarization-activated (I(h)) channels, and it was potently reversed by the KCNQ channel blocker 4-pyridinylmethyl-9(10H)-anthracenone (XE991), indicating a direct effect on KCNQ channels. Likewise, in vivo single unit recordings from dopaminergic neurons revealed a prominent reduction in spike activity after systemic administration of retigabine. Furthermore, retigabine inhibited dopamine synthesis and c-Fos expression in the striatum under basal conditions. Retigabine completely blocked the excitatory effect of dopamine D(2) autoreceptor antagonists. Again, the in vitro and in vivo effects of retigabine were completely reversed by preadministration of XE991. Dual immunocytochemistry revealed that KCNQ4 is the major KCNQ channel subunit expressed in all dopaminergic neurons in the mesolimbic and nigrostriatal pathways. Collectively, these observations indicate that retigabine negatively modulates dopaminergic neurotransmission, likely originating from stimulation of mesencephalic KCNQ4 channels.
منابع مشابه
Antipsychotic-like effect of retigabine [N-(2-Amino-4-(fluorobenzylamino)-phenyl)carbamic acid ester], a KCNQ potassium channel opener, via modulation of mesolimbic dopaminergic neurotransmission.
Dopaminergic (DAergic) neurons in the ventral tegmental area express both KCNQ2 and KCNQ4 channels, which opening is expected to decrease neuronal excitability via neuronal hyper-polarization. Because psychotic symptoms are believed to be associated with an increased excitability of dopamine (DA) cells in the mesencephalon, KCNQ channels might represent a new potential target for the treatment ...
متن کاملActivation of peripheral KCNQ channels attenuates inflammatory pain
BACKGROUND Refractory chronic pain dramatically reduces the quality of life of patients. Existing drugs cannot fully achieve effective chronic pain control because of their lower efficacy and/or accompanying side effects. Voltage-gated potassium channels (KCNQ) openers have demonstrated their analgesic effect in preclinical and clinical studies, and are thus considered to be a potential therape...
متن کاملRefinement of the binding site and mode of action of the anticonvulsant Retigabine on KCNQ K+ channels.
The discovery of retigabine has provided access to alternative anticonvulsant compounds with a novel mode of action. Acting as potassium channel opener, retigabine exclusively activates neuronal KCNQ-type K(+) channels, mainly by shifting the voltage-dependence of channel activation to hyperpolarizing potentials. So far, only parts of the retigabine-binding site have been described, including T...
متن کاملCombinatorial augmentation of voltage-gated KCNQ potassium channels by chemical openers.
Noninactivating potassium current formed by KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) subunits resembles neuronal M-currents which are activated by voltage and play a critical role in controlling membrane excitability. Activation of voltage-gated potassium channels by a chemical opener is uncommon. Therefore, the mechanisms of action are worthy further investigation. Retigabine and zinc pyrithione are tw...
متن کاملCALL FOR PAPERS Real-time Visualization of Lung Function: from Micro to Macro KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a 2-adrenergic agonist enhances relaxation of rat airways
Brueggemann LI, Haick JM, Neuburg S, Tate S, Randhawa D, Cribbs LL, Byron KL. KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a 2-adrenergic agonist enhances relaxation of rat airways. Am J Physiol Lung Cell Mol Physiol 306: L476 –L486, 2014. First published January 17, 2014; doi:10.1152/ajplung.00253.2013.—KCNQ (Kv7 family) potassium (K ) channels were recently fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 318 3 شماره
صفحات -
تاریخ انتشار 2006